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ABSTRACT 

A method is presented for obtaining numerical solutions of the 

Eulerian hydrodynamic equations for supersonic compressible flows. The 

procedure is an adaptation of the PIC method to the case of a continuous 

fluid. Some discussion is given concerning the limitations of the pro- 

cedure; the conservation of mass, energy, and momentum; and the treatment 

of rigid obstacles and two-fluid interfaces. Examples of calculations 

for flows past a number of cylindrically symmetric objects are also pre- 

sented. 
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I.  INTRODUCTION 

This report has been -written with a two-fold purpose. The first is 

to record a set of procedures developed several years ago for the numeri- 

cal solution of the Eulerian hydrodynamic equations for compressible isen- 

tropic flow. The second is to present the results of some recent computa- 

tions on the supersonic flow of air past a variety of cylindrically 

symmetric objects. 

The procedure for solving the hydrodynamic equations to be described 

here is closely related to the semi-Eulerian "Particle-in-Cell" (PIC) 

method and is in fact merely an extension of that approach to a contin- 

uous fluid. Like the PIC method, it is applicable to a wide variety of 

multi-fluid hydrodynamic problems in one or more dimensions and is par- 

ticularly suited to situations involving large distortions of the fluid. 

Limitations of the procedure are imposed primarily by bounded instabili- 

ties which arise when large portions of the fluid under consideration 

move at velocities below the local sound speeds. Otherwise, calculational 

accuracy is governed mainly by the fineness of the Eulerian difference 

mesh one must use, which is determined by the storage capacity and speed 

of available digital computers. 



Sections II and III of this report are devoted to a discussion of the 

numerical techniques involved in the solution of the hydrodynamic equa- 

tions. In Section IV, theoretical results are given for steady-state flow 

around right circular cylinders with conical noses of various apex angles 

and at various Mach numbers between one and five. Comparisons of the com- 

puted positions of detached shocks and of the pressure distribution about 

2 
the obstacle nose are made with the experimental results of Marschner and 

3 
Oguchi. 

II. CALCULATIOKAL PROCEDURE 

A. Description of the Method 

The method for solving the hydrodynamic equations which is described 

below finds its primary applications in two-dimensional problems. We will 

therefore forego a discussion of the procedure in one dimension and begin 

immediately with a discussion of the two-dimensional differencing scheme. 

For simplicity, only a single fluid in Cartesian coordinates will be con- 

sidered at this time. 

In order to obtain a system of difference equations to describe the 

motion of the fluid, we assume that the region of fluid under considera- 

tion is covered by a fixed (Eulerian) grid of rectangular cells of sides 

Ax and Ay (Fig. 1). 

■8- 



i,j+i i+l,j+l 

l-l,j i,i i + l,I 

i,i-l 

Figure 1. Example of a two dimensional Eulerian mesh 

Each cell is labeled by the pair of integers (i,j) which denote the loca- 

tion of the cell center with respect to some origin. Half integer indices 

are used to denote cell boundaries. For example, the indices (i+-§>j) re~ 

fer to the right-hand boundary of cell (i,j), and (i,J-i) refers to the 

lover boundary of this cell. A calculation is begun by assigning values 

for the density p, velocity v*, and specific energy E of the fluid at the 

center of each cell at the initial time t = 0. From these initial condi- 

tions the configuration of the fluid over the mesh is obtained at a 

slightly later time t = At by means of the hydrodynamic equations of motion. 

In general, one proceeds cyclically to calculate the state of the fluid at 

time t = nAt from the state at time t = (n-1 )At where n is an integer 

which will henceforth be used without the At to denote the time. 

In integral form, the hydrodynamic equations for compressible isen- 

tropic flow are 

'v(t) &*- i(t) 
pv • ds (1) 



4     f PVdT  =  -   / p  di> (2) 
Öt   JV(t) ^(t) 

if EdT     =-f        pT'd? (3) 
^ Jv(t) Js(t) 

p = p(p,I) . (*0 

Here, we are considering integration over a specific element of fluid oc- 

cupying volume v(t) at time t and bounded "by surface S(t). It is assumed 

that no external forces or internal dissipative mechanisms are present 

and that the motion of an element of fluid is produced solely "by the pres- 

sure p exerted on this volume by neighboring fluid elements. The first 

three equations are statements of the conservation of mass, momentum, and 

energy of the fluid; and the last, the equation of state, relates the 

pressure of the fluid to the density and the specific internal energy, 

In differencing these equations, we will consider the volume V(t) 

to be that of some arbitrary cell (i,j) and the surface S(t) to represent 

the four sides of this cell. 

As in the PIC method, the calculation of the time (n+1) configura- 

tion of the fluid from that at time n may be thought of as proceeding in 

three steps. In the first, the fluid element in each cell is assumed 

fixed and no flow across the cell boundaries is allowed. By applying 

Eqs. (2), (5), and (4), intermediate values of the velocity and 

specific energy in each cell are obtained. The second phase consists 

of the calculation of the mass flows across the cell boundaries. 

• 10- 



Mass crossing a boundary is assumed to carry with it the intermediate 

velocity and specific energy of the cell from which it came. In the 

third phase, the new cell densities are computed; and by application of 

conservation of energy and momentum, the new velocities and specific 

energies are subsequently obtained. 

In the following, all cells under consideration will be assumed 

interior to the fluid. The effect of boundaries will be left for later 

discussion. 

B. The Difference Equations 

1. Phase I 

It is assumed that the following quantities are known at the center 

of each cell (i,j) at time n, i.e., t = nAt, and that for purposes of 

differencing they remain constant throughout the cell: 

*      .>.«.     (n) density:   p. ' 

velocity:  u. , (x component) 
i,0 

( n') 
vj   .    (y component) 
i,0 

(n) 
specific energy:      E.   . 

By applying the equation of state Eq. (k), the pressure at the 

center of each cell is obtained, 

p(n) .       f (n)    E(n)  . 1   Qn)2 + Jnf 

-11- 



Integrating Eqs. (2) and (3) over the volume of cell (i,j) at time n re- 

sults in the difference equations, 

(n)  /äuN(n)   .    A 
Pi,J (ot}.   . AxAy   = 

1,0 

» » 
L   1 + 2,0 1~2,0J 

Ay 

(n)   /övN(n)   .     . 
1*0 

k5t- y = 
1*0 

Pi   1+i- " Pi    I-1 Ax 

(n)   /öEx(n)   .    . 
pi,  (ot}. >^y = - 

,J 1,0 

>>      u(n) 
P.    1    .   u.    x    • 
.^i+2,0       1+2,0 

(n) 
2* 

(n) 
0    i4,0J 

Ay 

(n)      v(n) (n)      y(n) 
Pi,j+| Vi,d+| " Pi,j4   i,o4- 

Ax 

The assumption of no mass flow has been used to remove the density from 

the time derivative on the left-hand sides of these equations. The pres- 

sures and velocities on the right refer to the cell boundaries and are 

taken as simple averages of these quantities in the cells separated by a 

given boundary. For instance, 

1 „(n)  - - pi+i,J " 2 
(n)   (n) 

P. 1 + P. i . 
5i,j   1+1, oJ 

Defining the time derivatives on the left sides of these equations by 

.    (n)      u<n>. - M 
(|V ; = ^o i^j 

i,0 
At 

.     (n)      v n    - v n 

At 
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(n)      E^ - E<n> 
) 
i>0 

kot\    . At 

we arrive at the following equations for the intermediate velocity and 

specific energy, which are distinguished by a tilde symbol: 

(n)     (n) 

~W = u(n) _ Pi4,j " Pi-jj J^x (5) 
i,j   i,J 

u. , = u, i —^ — -^ 
Pi,j 

(n)     (n) 

<n) = v(n) _ !iij±LL2iiii 4L (6) v. - = v_: - -     r
Ay      n£) i,J   i*J        -      p; 

i(n) = E(n) 
i,j   i,J Ax 

(n)   (n)     (n)   (n) _ 
p   i v. . 1 - p. . 1 v. . 1^ 

Ay 
At 

(7) 

2. Phase II 

From the right-hand side of Eq. (1) it is seen that the flow across 

a boundary from one cell into another is proportional to the fluid den- 

sity and normal component of velocity at the interface. Equation (1) 

differences into the following equation expressing the conservation of 

mass: 

(n+1)  A   A (n)   .    . AW (n) ... (n)        ... (n)        ... (n) /0v 
p i,j AxAy = p±,jAxAy - **ikU + ^4ä - *%&+ *% A   (8) 

where 
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A .,(n)     (n)  ~(n)  A A. AM. I . = p. I . u. I . Ay At 
1+2, J   HX+2,J  1+2,J (9) 

A „(n)     (n)  ~(n)  . . , 
A M. . i = p. . i v: .i AxAt 

1,0+2    i>3+2      ^J+2 

etc. are the mass flows across the cell boundaries indicated by the sub- 

scripts. 

It has been found that it is nov no longer adequate to use simple 

averages for the densities and velocities at the cell boundaries as was 

done in Phase I. Doing so tends to lead to minor but noticeable insta- 

bilities in the solution of the difference equations. Instead, a weight- 

ing must be given these quantities in preference of the cell out of which 

the fluid flows. (This necessity arises "naturally" when one remembers 

that due to the finite time step, At, the center of the fluid element 

leaving a cell lies somewhat within the cell and not at the boundary.) 

In the mass flow calculation, the boundary quantities can be obtained 

from the first two terms of a Taylor expansion about the center of the 

emptying cell. Thus the equations for the boundary quantities depend 

on the direction of flow at the cell interface. For the right-hand boun- 

dary of cell (i,j), for instance, the mass flow AM. [   .  would be calcu- 

lated as follows: 

If u\n\  + 5<aJ  >0and 

üK . s s!n>. + Ä
(n> &£. u("> ♦ tf+M: ffi,j > o 

1+2,0        i,J        ox'. 2 i,j k 

then 
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AM(.n}   . 
1+2,0 

5(n)      _ rr(n) 
ui„j + T 

» (n) 

J    LPi,j + ^ 
AyAt 

If   rfn), + fa]   . < 0 and ^,J+Vl,J 

(n) 
(n) r(n) 

Sft«-^       -(i)n        Ax = g(n) V2?j J \3 < 0 
i+#,0        1+1,o        ox i+1,0" 

then 
u (n) u 

Lui+i,j T 

1+1, J 

0(n)       . pHg,J       pi,j 
J Lpi+i,j h 

AyAt 

Otherwise    AM.   (   . = 0. 
1+2* J 

The flows across the other three sides of cell (i,o) are obtained in 

a similar manner.    The requirement that the sign of the simple average 

boundary velocity 
~(n}      ~l n j u        + u.  ,   ..in the case above 
L i,j  i+l,o 

be used in determin- 

ing the form for the mass flow term ensures that a calculation will be in- 

dependent of the direction one chooses in progressing from cell to cell 

through the mesh. 

When more than one fluid is present it is convenient to drop the de- 

rivative part of the density term in the above mass flow equation, leaving 

only the first term in the Taylor expansion. This does not noticeably 

affect the stability of the difference equations. 

3. Phase III 

Mass flowing from one cell to another is assumed to carry with it the 

tilde velocity and specific energy of the cell from which it came. Thus, 

after the mass flow, the composition of a given cell may be thought of as 

•15- 



having a fraction with mass M at velocity v1 and specific energy E1, a 

portion M with velocity v    and specific energy E^ etc. A single ve- 

locity and specific energy for the cell can he obtained by applying the 

laws of conservation of momentum and energy: 

vfinal   Z ^. 

E_ 
'final   y 

\ 

To illustrate this by a specific example, consider the changes in 

cell (i,j) due to the transport of fluid. We assume that the fluid flow 

in the neighborhood of this cell is upward and to the right. Therefore, 

fluid flows into (i,j) across its lower and left boundaries and flows out 

across its upper and right-hand sides. The composition of the cell after 

transport is as follows: 

mass: 

M„ s AM \n\   i 

M 
5 L x,j 1+2>J    ijJ+2-l 
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carrying velocity: 

~(n)   ~(n) 
.  i-l,j' i~1,0. 

~( n)   ~( n) 
. i,o-1  i,j-1. 

~(n)   ~(n) 
u. . , v. . 

■ 1,0    i,0J 

carrying specific energy: 

i-!,J 

*(n) 
Ei,0-1 

1,0 

The time (n+1) parameters for cell (i,j) will thus be 

(n+1) _ 
i,J 

u(.n+1> 
1,0 

(n+1) 
1,0 

?(n+1) 
Ji,0 

M,   + M0 + M7 1 2        J? 
Ax Ay 

hLu{n]   A + M0u(.n?  .   + Mi
n! 

-    1  i-lfJ        2 i,j-1        3 i«0 
p.   .   '    AxAy 
i,0 

~(n} ~(n) ~(n) 
=    1   1-1,0 2 1,0-1 3 ijj 

(n+1) 

1,0 

iKn) 

AxAy 

iKn) M,^"'    .  + ME!"!  ,   + nß)n\ 
1   1-1,j 2 1,0-1 H,J 
    (n+1)   / A  p\    /  AxAy 

1,0 
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More generally, if the four sides of cell (i,j) axe numbered by 

k = 1, 2, 3, and h  as shown below, 

4 

i.J 

we can define a function C. .(k) for this cell referring to side k such 
i* J 

that 

C.   .(k-) = 1  if fluid flows into cell (i,j)  across side k x* J 
= 0 if fluid flows out of cell (i,j) across side k 

Then the final velocity and energy are given by the expressions 

u(n!1}= (c.    .(1)  u?n]    . AM!n!   .  + C..(2)   u(n).   ,  AMf
n).   , 

i,j      y i,o        i-i,o      1-2*0      u        1*0-1      1*0-2 

+ C   .(3)  u.   ,    .  AMfn!    . 
1J 1+1,J 1+2*0 

+ C.    .(+)  K(n)   ,  AM^n).   x  + u(.n). ^n). AxAy   -  [1   - C,    .0)]       (10) 
i,j i,j+1        1,0+2 1*0   I 1*0 1*0 

X AMC.n!   .   -   [1   - C      .(2)]  AM!
11

!   i 
1-2*0 i*0 i*0~2 

v(n+1)  = (c       (1)  v(nJ       AM!n!    .  + C.    .(2)  v{n\  ,  AM?n).   , 
i*o y 1*0 1-1*0       1"2*0       1,0 1*0-1      1,0-2 

+ C    .(3)   vin]    .  A^n) + 'i,j i+1,ö      .   i. 
1+2*0 (11) 

(Equation continued) 
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C.    Xk)  ^n).   .  A^n).   x  + ^.n). Un). AxAy -   [1   - C.     (1)] 
i,0 ±,J+1      i,J+2        i,0   L i,0 x>0 

X AM(.n)x   .   -   [1   - C.    .(2)]  AM!n).   x  (11) 

-   [1   - C    .(3)]  4^1   .   -   [1   - C.     (k)]  AM^ J/[p^1)AxAy 1,J 1 + 2,0 i,0 1,0+2J//  L   x>0 

E(.n!1}  = /c.   ,(1)  E.   .    . AM(.nl   .  + C    .(2)  E.    .   .  AM Jn).   , 
1,3 I   i,j 1-1,J 1-2*0 1,0 1,0-1 1,0-2 

+ C.    .(3) E.   ,    . AM^.nl   . 
1,0 i+1,0        1+2,0 

C.    .(10  E.    .   .  AM(.n).   1  +E
{n) Un\ AxAy-   [1   - C.    .(1)]       (12) 

i,0 1,0+1 1,0+2 1,0   I 1,0 1,0 

XAR(f  -   [1   - C    .(2)]  AM^n).   1 
1-2,0 1,0 1,0-2 

[1 - ci,j(3)] A\iff3 - [1 - Ci^^^Lfl/ip^^y i,j+iy/ LPi,ö 

This completes the transition of the fluid configuration from time 

n to time (n+1). 

C. Comments 

In this section a discussion will be given of such questions as the 

conservation of mass, energy, and momentum within the framework of the 

difference equations, and the stability and accuracy of the method. 

1. Compliance with Conservation Laws 

Consider a rectangular array of cells covering a region of fluid 

•19- 



under investigation and labeled by cell indices extending from i = 1 to 

i = i   and j = 1 to j = j  . We want to examine the change of the 
max max 

total mass, energy, and momentum within the mesh between time nAt and 

(n+1)Ato In particular, we want to show that the differencing scheme 

described above is consistent with the conservation of mass, energy, and 

momentum. 

a. Mass Conservation 

The change in the mass of cell (i,j) in the transition from time 

nAt to (n+1) At is 

<"1>  -  »1 AXAy . Al«   .  - AM«   . + AM<"\ - J±% AM!11! pi,j   "% iJ+2 

The mass change for the entire system in this time interval is therefore 
i   j max max 

"W-I I-a 
i=1  j=1 

(n)  _ AM(
n)  ., AM(

n) . _ AM(
n) ."* 

1,J 

Since the mass flow into cell (i,j) from the left is equal to the flow out 

of cell (i-1,j) from the right, etc., all terms in this sum pertaining to 

boundaries interior to the mesh cancel one another leaving the result 

max - -,   ,Eiaxr 
M     _ AM(n) AM(n)=Y  |AM<n;! - AM^ + 

J=1 »* ^J-   1=1 

AM: i - AM. .   1 x*2       ^J    +# '^     'max d- 

The mass change of the system in the course of one calculation cycle is 

seem to be due to fluid entering or leaving across the limiting boundaries 
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of the mesh. No "creation" or "destruction" of mass occurs in the inter- 

ior of the mesh. 

b. Energy and Momentum Conservation 

The redistribution of energy and momentum among the mesh cells occurs 

in two separate ways within a calculation cycle: first in Phase I, where 

each cell is treated as a Lagrangian mass element and fluid is restrained 

from flowing, and again in Phase III, where the effects of the mass trans- 

port are taken into account. 

In Phase I, energy and momentum are transmitted to a cell by means of 

the pressure forces acting upon it. The change in these quantities within 

the system is the difference between the sum of the tilde and the initial 

energy and momenta of the mesh cells. 

(n) 
% 

i=1  <H M 
g(n) _ E(n) 
. i,j   i,JJ 

AxAy 

i  j 

^^ (n) T3n) _ ,-*(n) 

i=i j=i 

dn) M 
Inserting the expressions for v* ; and E; ; [Eqs. (5, 6, 7)] into these 

1,0     *>«J 

equations gives 

(n) (n) (n)        (n) 
V^ Piji  i     i-4^-  i      Pi-JL  1 ui«i  i 

A^ =  -     )     AxAy      i+2/J     1+?'J X   2'J     1   2fJ 

(n)        (n) (n)      ,(n)       n 

+    3-/J+2     x/J+2 l/J-2    i/J-Z      A t 
Ay J 
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A P. 
T,x 

A P, 
T,y 

(n (n) 

-)    AxAy   1+g'JA i-2^. At £j Ax 

(n) (n) 
Zp.   .   i - p.   .   i 

AxAy    ^J+ä    .   i?j"2 A t 
Ay 

i,0 

As in the case of the mass flow, all terms pertaining to cell boundaries 

interior to the mesh appear twice — once with a positive and once with a 

negative sign, and so cancel, tfe are left with energy and momentum flux 

terms between the boundary of the mesh and the exterior region only 

j 
max^ 

~   r I (n)  (n)   (n)      (n)    1 A  . , 
A E = >  Pi ' 4 ! - p; '     i   . v>        x  Ayut 

j=1 
max max 

(n) (n)   (n)     (n) 

1=1 
- XtZ      1>2 1>J    +2      1>J max max 

Ax6t 

max r 
A S   V   (»)   (n) A PX = )  Pi ■ P y 4 

X    Lu       L 2>J    1+2* 

A P 

j=1 
i 

i=l 

max 

(n)   (n) 

1,2     max . 

AyAt 

AxAt 

Similarly, in Phase III mass crossing a cell boundary carries with it 

an amount of energy and momentum determined by the specific energy and ve- 

locity of the cell from which it is removed. As was mentioned in the dis- 

cussion of this phase of the calculation cycle, conservation of energy 
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and momentum are used explicitly to ensure that energy and momentum lost 

by one cell are gained by another. (The equations that demonstrate this 

are identical to those illustrating mass conservation except that now the 

mass flows would be multiplied by appropriate specific energy or velocity 

components.) The energy and momentum changes of the system occurring in 

Phase III are 

max 

A E 
III 

i=1 
i.-g- i.L     i,j  +2 l.U > *■      > > "max    ' J 

(n)    ~(n) T9*       (*) s(Q) AM^~' -^\A} i  "»"2J max 

A P 
III 

1=1 

(n) ~(n)     (n)    ~(n) 
A M^ i u^( - A U\   ;,   . l u* ' 

max 

z ,(") ~(n) A Mi"' u: - - A K"'    i  ui - 
2*0  L>0     1^^+2*0 KjO. L 

max 

S(a) 

A P 
III A „(n) ~(n)  A M(n)    ~(n) A M. i v; ; - A M* '  .i Y 

i=1 
L>2 i,L i.j  +t i.U. '°max * '  J 

where g^ is the tilde specific energy of the cell in column i on 
i,L 
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the lower boundary of the mesh from which the mass is flowing, and simi- 

larly for the other energy and velocity terms. If mass is flowing into 

the system from outside the mesh, the energies and velocities to be used 

are specified by the external conditions imposed on the calculation. 

The total energy and momentum changes per cycle are the sums of the 

contributions to these quantities from Phases I and III. Energy and mo- 

mentum are rigorously conserved within the differencing scheme and their 

changes can occur only through interaction with the region exterior to 

the mesh. 

2. Stability and Accuracy 

No thorough analysis of the questions of the stability and accuracy 

of the difference scheme described above has been made. The following 

comments will therefore either be of a self-evident nature or will be 

based largely on observations on past calculational experiments. 

Stability and accuracy are closely related. Both can be affected by 

relatively small changes in the higher order derivative terms implied by 

the replacement of the differential hydrodynamic equations by difference 

equations. Basically, the difference scheme under consideration is accur- 

ate to first order in the time and space intervals. However true accur- 

acy at the end of an extended calculation depends not only on the accur- 

acy over a single time step, but on the manner in which successive errors 

tend to accumulate or cancel. How a specific form of differencing affects 

this latter aspect of accuracy is not subject to simple analysis. In the 

course of developing the difference equations of the previous section, a 
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number of variations in the form of such quantities as the boundary pres- 

sures and the mass flows was investigated. The final choice for these 

quantities was based on comparisons of calculated and analytic solutions 

for simple problems like the propagation and reflection of a plane shock 

(see Fig. 2). In this way, differencing procedures with large cumulative 

error were hopefully eliminated. 

A more direct way in which accuracy is limited "by the magnitudes of 

the space and time intervals is that transient phenomena occurring in 

times shorter than At or details of a flow pattern smaller than the size 

of a mesh cell will always be washed out. 

The difference equations are subject to the Courant stability cri- 

k * 
terion cAt< Ax which requires that a disturbance moving at the local 

sound speed c may only affect adjacent mesh points in a single time cycle. 

A generally more restrictive condition for supersonic problems is that 

u At < Ax and vAt < Ax since the difference equations do not provide a 

mechanism for the transfer of fluid between nonadjacent cells. 

Explicit Eulerian difference equations are often unconditionally un- 

stable with respect to small perturbations in the flow quantities, par- 

ticularly at low velocity. Stability can be achieved by the addition of 

5 
a fictitious viscous pressure to the hydrostatic pressure in the momen- 

tum and energy equations. Such viscous pressure terms cause a diffusion 

of momentum and energy which has a limiting effect on the gradients of 

these quantities and constitutes a source of entropy production through 

the conversion of kinetic to internal energy. Though the diffusion 

# 
In the following we will set Ax = Ay. 
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caused by these terms contributes to the inaccuracy of a difference 

scheme, it serves the important function, in addition to its stabilizing 

effects, of smearing out discontinuities such as shock fronts, which 

5 
enables the calculation of these phenomena without special treatment. 

Typically, discontinuities such as shock fronts are smeared over a 

three-cell width, so that a reduction in cell size will improve the sharp- 

ness of the discontinuity. 

The dissipation terms of the difference equations described above 

are implicit rather than explicit and arise from the "repartitioning" of 

the energy and momentum in cells on the basis of total energy and momen- 

tum conservation after the mass flow, i.e. in Phase III of the calcula- 

tion. The dissipative mechanisms involved can be illustrated by consider- 

ing a box containing N distinct mass phases having different velocities 

and internal energies, and then allowing these to fuse into a single mass 

with one velocity and one internal energy. Originally the contents of 

the box could be described by the set of masses, velocities and specific 

internal energies, 

The initial momentum and internal energy are 

N 

P = L Vk 
k=1 

N 

^X Vk 
k=1 
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Since mass, energy, and momentum must be conserved, the final internal 

energy will be 

S- ■        - *   -»2 

^f= X \ %. \ + v ■ h 
k=1 

where 
N 

M -1% k 
k=1 

The change in internal energy will be 

N 

A IE = IBf - JE±  = ^ £ (y>k \ - mA v^J 
j,k=1 

N 

--7 2M Z-i 

/-»2  -»2 

k + Vj 
j>k=1 

m m^ (v + v, - 2v,*v 

_»p  _»2   -♦ -*   ,"*   ~*\2 
Since v,  + v. - 2v.»v, = (v. - v.) the change in internal energy, 

•K     j      J  it     K    J 

A IE, will be greater than or equal to zero and will, in fact, only 

vanish if all N initial velocities are equal. Therefore, the mixing of 

the component masses in general results in a conversion of kinetic to 

internal energy, a dissipative entropy producing process. 

The form of the viscous pressure implicit in the difference equa- 

tions may be obtained by converting these back to differential equa- 

tions at the point (i,j), retaining terms through first order in Ax 
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and Ay.  That is, we let 

pi,j-*p'   Ei,J-B'   ui,J-u'   Vi,j-V 

and replace flew quantities at neighboring points by appropriate Taylor 

expansions about (i,j). In performing this reduction it is convenient 

to choose a definite flow direction, say in the positive u and v direc- 

tions. The resultant differential equations are 

|g + div(pu5 = 0 

^ + ^^ + IE = h (I puAxi) + h dpvAy^ 
dpv  .  A-  r    ~\       öp       d   /l       A    oV\      d  /I        A      dv\ 
■st + to(pTG'+ ^ - 5F ^pTAy s^J+ sU PUAX sy 

Apart from the first order terms on the right, these are the Eulerian 

hydrodynamic equations. That they can be obtained from the difference 

equations justifies the three phase difference scheme. 

The viscous pressure is seen from the momentum equations to have 

the appearance of a tensorial pressure resulting from viscous interactions, 

* 
The first order terms in At do not seem to have as important a role as 
the viscosity terms, undoubtedly because At «Ax. They are also pri- 
marily diffusion-like quantities. 
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2P 

.    du .    cSu 
^Sx- VAyoy- 

dv .    dv 
^s VAy3y- 

1 -» -*  -*       ~*    ~* 
However, written in the diadic form - pu Ar'Vu, where Ar = Axi 

—♦ 
+ Ayj , it is seen that this pressure is not an invariant form due to the 

presence of the fixed vector, Ar. Its elements are large only when the 

velocity and its gradients are large. (The diffusion terms in the 

energy equation above are also small when v is small.) Thus in regions 

of near stagnation the viscosity will he ineffective and the instabili- 

ties of the difference equations will cause an exponential growth of any 

perturbations to the solution. However, once the velocity has reached a 

magnitude comparable to the local sound speed, the viscosity will act to 

limit further growth of the instability. This type of hounded instabili- 

ty is illustrated by Fig. 2a where the calculated velocity for a one di- 

mensional steady shock reflected from a barrier is shown. The shock 

front is moving to the left and the velocity behind it should be zero. 

However, instabilities cause large oscillations in this quantity. 

The difficulties with the difference equations at low velocities can 

be alleviated by supplementing the implicit viscous pressure with an ex- 

plicit term in the momentum and energy equations. A satisfactory way of 

accomplishing this is to add such a term to the pressure at a cell bound- 

ary if the fluid speed is found to be small compared to the sound speed 
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at this boundary. For example, assuming the fluid is a perfect gas and 

considering the right-hand boundary of cell (i,j), one could make a test 

to see if 

(15) 

where cJ 1 .is the sound speed at the boundary and A is a constant grea- 

ter than one. If the inequality is satisfied no additional viscous term 

6 
is necessary. If it is not, a Landshoff type viscous pressure could be 

added to the boundary pressure, i.e., 

With such a prescription the difference equations will remain stable at 

fluid speeds of a few percent of the local speeds of sound. Optimum con- 

stants A and B can be determined from tests with simple one dimensional 

problems. For the calculations in Section IV of this report where the 

fluid was air and 7 = 1 ,k,  A and B were 1.5 and 0.3, respectively. 

Figures 2b and 2a compare the calculated velocity of a steady shock which 

has been reflected from a rigid wall, with and without a supplementary 

viscous pressure. The improved stability is self evident. 

As a final remark, it might be noted that negative internal energies 

can arise under special circumstances in the course of a calculation as 

in the PIC method. This is particularly true during the initial time 
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cycles when a cold fluid at rest is acted upon by some driving force. 

In this case, the source of the negative internal energy can be found 

in Eqs. (5), (6), and (7) of the Phase I calculation. If initially 

u(n) VW aX]äL f\
n)  gyg zero tut a pressure gradient exists, u. \  an 

±,3      i,J'    i*J 1"3 

AT
11

' will not vanish but W:n{  will in general remain zero since the 
1,3 x,3 

time n velocities are used to calculate the energy fluxes. Therefore 

one will obtain 

(n) = ~(n) _ 1 r(n) A ~(n) < 0 

since E   = 0. This result is due to a somewhat improper phasing be- 
i, j 

tween the momentum Eqs. (5) and (6) and the energy Eq. (7) and could 

be largely corrected by replacing the velocities in the latter by the 

just calculated tilde velocities. However these negative internal ener- 

gies do not seem to persist for more than a few time cycles and have not 

led to any difficulties, so their occasional occurrence has been ignored. 

III. BOUNDARY CONDITIONS AND THE TREATMENT OF SEVERAL FLUIDS 

For a single fluid the most common types of boundary conditions 

fall into two categories, those at open ends of the mesh across which 

fluid can enter or leave and those at rigid barriers within or at the 

extremities of the mesh. The different cases which fall under each cate- 

gory will be enumerated below. 
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A. Boundary Conditions at Open Ends of a Mesh 

1. Prescribed Input 

Suppose fluid is flowing into a rectangular mesh from the left-hand 

side. Then the left side (^,j) of cell (1,j) forms the boundary with 

the exterior region. It is seen from Eqs. (5), (7), (8), (9), and (10) that 

the following quantities must be known in order to apply the difference 

equations: 

*i,y \i' AMi,j' \y \y \r *-I,J' P-<,J 

That is, we must know the energy and momentum flux into the cell from the 

outside and the mass transport quantities. The indices (0,j) and (-1,j) 

refer to fictitious cells to the left of mesh cell (1,j). The input 

boundary conditions are prescribed by specifying the above eight quanti- 

ties for each time cycle. More simply, it is usually possible to pre- 

scribe the nature of the flow to the left of cell (1,j). If p ■, ,t 
-' to 

v „  .a  »u  ,v ., E^ . are given for the fictitious external cells 

(-1,j) and (0,j) each cycle, the boundary quantities at d>j) can be cal- 

culated with the equations of Section II. 

2. Continuous Outflow 

In order to allow fluid to flow out of a mesh, the external boundary 

must be sufficiently far from any source of disturbance so that the flow 

pattern can be extrapolated to the outside. The simplest example of this 

situation is where the flow is uniform, say at the right-hand end of the 

mesh. If the mesh is N cells long, the conditions in a fictitious cell 
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(N + 1,j) to the right of the last cell (N,j) should always be the same 

as in (N,j). Suitable boundary conditions can be achieved by allowing 

for cell (N + l,j) and setting 

at the end of Phase I of each cycle of calculation, and setting 

(n+1)   (n+1)   „(XH-1)   (n+1)   v( n+1)   (n+1)    (n+1)   (n+1) 

at the end of Phase III. 

B. Interactions with Rigid Barriers 

1. Barriers at Cell Boundaries 

Barriers at cell boundaries occur most commonly when the mesh con- 

sists of a channel to which the fluid is confined or in cylindrical co- 

ordinates where the axis of symmetry can be represented by a rigid bar- 

rier. The boundary conditions are determined by the necessity that there 

must be no energy flux or fluid flow across the barrier. This will be 

assured if the velocity normal to the barrier is zero. The momentum flux 

at the obstacle boundary is not zero and can be obtained approximately 

by extrapolating the pressure to the wall. If the mesh is fine, the 

pressure at the barrier can be chosen as that at the center of the cell 

bounded by the obstacle. 

By way of an example, assume the right-hand side of cell (i,j) re- 

presents the boundary with a rigid obstacle. As in the case of the 
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open-ended boundary, a fictitious mesh cell (i + 1,j) can be assumed and 

its state prescribed in terms of that of cell (i,j) so that application 

of the equation of Section II will automatically produce the correct 

boundary conditions. The prescription for cell (i + 1,j) is that the 

density and specific energy must at all times be the same as in cell 

(i,j), but the velocity must be the mirror image of that in (i,«j). Thus 

at the end of Phase I one can set 

E±+i,j= \y si+i,j"-
ai,j' 1+1,j   i,j 

and at the end of Phase III, 

(n+1)  _    (n+1) (w-1) _ Jn+1) 
Pi+l,j " P i,J '      Bi+l,J ~      i,J  ' 

u (n+1) 
i+1,j 

= - u (n+1) (n+1)  = Jn+1) 
i/0 

,   v:      '. = v: 
'      i+l,J 

In the case that the obstacle has a corner as shown by the shaded area 

below, 

i.J 

i+l,j+l 

SIP 
the fictitious cell (i + 1,j) will be assigned two different sets of 

variables depending on whether computations are being done in cell (i,j) 

or (i + 1,  j + 1). 

The use of a fictitious cell with assigned variables is not actually 

necessary though it often is convenient.    In practice one can test to 

see if calculations are being made in a "boundary cell" like (i,j)  shown 
~(n) ~(n+1) _ 

above,  and if so, merely set pi      = P.   . and u    ,      - u    ,      - u. 
' ' l+2>0    1>J       1+2>d    1+2>0 
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If this second procedure is followed, it has been found that setting 

u    = + u   for use in the mass flow calculation improves the ac- 
i+1,j    i>J 

curacy of the computations. 

2. Arbitrary Linear Barriers Within a Cell 

As in the previous case of a barrier at a cell boundary, the dif- 

ference equations applicable when the barrier is within a cell are de- 

termined by the requirements that no energy flux or mass may cross the 

boundary. In fact, treatment of a barrier at a cell boundary is merely 

a special case of what will be discussed here. 

Placing a barrier within a mesh cell has two primary effects. It 

shifts the center of mass from the cell center to some point nearer the 

cell boundary, and it reduces the effective length of the cell in at 

least one direction. In general, the hydrodynamic parameters describing 

the state of the fluid within a mesh cell refer specifically to the 

center of mass of the cell. When making an interpolation of some quan- 

tity between cells, one in fact should interpolate between centers of 

mass. For non-fractional cells the center of mass will either coincide 

with the cell center, as in Cartesian coordinates, or be sufficiently 

close to the cell center so that the difference can be neglected. An 

example of the latter situation is cylindrical coordinates where even for 

cells adjacent to the axis of symmetry the center of mass differs from 

the cell center by only two tenths of the radial cell dimension. Since 

Cells containing or adjacent to a barrier will be called "fractional 
cells." 
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the center of mass of fractional cells are in general veil displaced 

from the cell center, we should by rights calculate those quantities 

needed at cell boundaries by interpolation with respect to centers of 

mass. However the errors involved in interpolating with respect to cell 

centers are felt to be minor, even for fractional cells; and so in prac- 

tice, these effects of center-of-mass displacement have been neglected. 

The reduction of the effective cell dimensions in fractional cells 

is a more serious matter, particularly if the center-of-mass displace- 

ments are disregarded. This is because the stability requirements for 

the difference equations at such a cell may now be violated with the re- 

sultant appearance of large localized fluctuations. Therefore special 

procedures must be adopted to minimize these difficulties. 

There are twelve distinct types of fractional cells containing sin- 

gle linear barriers which must be treated individually. They are of the 

following form (Fig. 3)t where the shaded area represents the presence 

of a rigid obstacle: 

(9) (10) (II) 

Figure 3. Types of fractional cells. 
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For each fractional cell a set of five geometrical quantities f. , 

A,  .A   i. A i  , and A. . , will be needed, f. . is the fraction 
±-h,y    i,J-r i+t>J     i/J+2 i»0 

of the total cell "volume," Ax Ay, which is occupied by fluid; Ai_jL ^ is 

the fraction of the "area" of cell side (i - ^,j) which is open to flow; 

etc. 

Using the above quantities, difference equations for fractional 

cells can be obtained from those for "full" cells given in Section II B 

by multiplying mass and energy transport terms at a given cell side by 

the corresponding fractional area, A, and by multiplying the densities 

occurring explicitly in Eqs. (5, 6, 7, 8, 10, 11, 12) by f  . The pres- 

sures in Eqs. (5) and (6) now represent averages of pressures at the perim- 

eter of the region occupied by fluid in the fractional cell. To avoid 

overly complicating the computing procedure, pressures have been calcu- 

lated as if the fractional cell were effectively rectangular, with the 

pressure at cell boundaries taken, as before, to be the simple average of 

the pressures in the cells on either side, and the pressure at the obsta- 

cle face being taken as that within the fractional cell. The pressure 

difference in Eq. (5) must be multiplied by the larger of the fractional 

areas A. i , and AJ x  A,  and that of Eq. (6) by the larger of A   A and 

A.   .  i. 
l,J+2 

With these changes, Eqs. (5) through (9) become 

>,(n)i  . -PM  ^   Ät    MaxCA-.i^A^,) 
TO 

~(n) _ ~(n)  _ Pi44..1 - Pi-i..i)   At    "*»HJ,J' *i-fcj' (5I) 
ui,j      Ui„) Ax Tn) t±fi 
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*»> . *») . Pi>M - »li&   At    »**i, j^ Ai,j-*> (6l) vi„>       i,j Ay ^n) f^ 

FA nCn)      u(n) (n)        (n) 

Ei,J        i,J      L Ax ^ 

+   i.J+?   i»3-^   1.3+? ifJ-7   J-iJ-p    ^/P-S 
Ay 

At 

(8-) 

1+5, j 1+2,3      1+2>J      i+2>d (9t) 

AM4
(n)

4   x-A4   ,   ipinL^B!   iAxAt 

" "i,M     i,J+i i,J+t ±,6+k 

In Eqs. (10), (11), and (12) we merely replace each p. . "by f   p .. All 

other equations, for instance those defining the p^{ . and u^N  appear- 

ing in Eq. (9) are treated in the same manner as in the case of full cells 

with a barrier along a cell boundary, as described in III B1 above. 

Another procedure which can be used without undue error in the calcu- 

lation of tilde quantities in fractional cells is to regard the cell as 

full-fractional as in III B1 for the purpose of obtaining u. . and v  . 

This produces a somewhat different transfer of momentum to the obstacle 

than results from the use of Eqs. (5') and (6»)> but does not seriously 

affect the flow pattern if the mesh is not too coarse. This alternate 

differencing cannot be applied to the calculation of E. . in fractional 
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cells since it would result in a violation of energy conservation. No 

energy can be transferred to the obstacle. 

In some instances the fractional volumes of cells of type (1), (2), 

(3), or (4) may be sufficiently small so that stability requirements are 

violated. The second treatment of the tilde velocities is then particu- 

larly useful. In addition, that for the tilde energy must be changed 

from Eq. (71) to prevent instabilities. One such modification, which is 

not in contradiction with energy conservation, is to allow only the frac- 

tion f . of the energy crossing the fully open boundary of these types 

of cells to enter or leave the fractional cell, the remaining fraction 

(1 - f .) being returned to the cell from which the energy flowed. For 

example, for a type (3) cell shown below the E equations would become: 

1-I.J x±jm 

g<n) = E(U) - Ei,j   i,J 

■n  Jn)   (n)  . 

Ax 

~(n)  _ Tj,(n) 
Vl,j -Ei-1,j 

Ai i+i piBli *iaU - Ai n pinU vinU' +    i.J+?   i>J+?    *»J+g i,J-2    i/J-2    1^J"2 
Ay 

„(n)       - _(n) (n) 
Pi-^,J U±4,i fi..1 " Pi-3/2.J ui-3/2tj 

 At 

pi,3 fi,J 

Ax 

Pil ^ vi 1^ - An\ i * vin? 1 ^ .    i-liJ+g   I-'*J+2       i-'iJ-?    1-1»3-2 
Ay 

At 

The calculation of a viscous pressure at the boundaries of fractional 

cells can be accomplished similarly to that for a normal cell with the 
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following additional prescription: 

a. If the cell side has part of its area open for fluid flow into 

an adjacent cell, calculate the viscous pressure terms as if 

this side were entirely unobstructed, 

"b. If a side of cell (i,j) is entirely closed to fluid flow, Eqs. 

(13) and (1h)  should be replaced by 

12  «- A 
2 x,j 

and 

r 2     2 
(13') 

The treatment of fractional cells described above is rather crude and 

can be improved upon in many ways. However it has the virtue of relative 

simplicity and does not deter from accuracy as long as the Eulerian mesh 

is made fine compared to the obstacle. 

C. Two Material Cells 

The presence of several distinct fluids separated by interfaces within 

the confines of an Eulerian mesh increases the difficulty of such calcula- 

tions many fold. Special treatment, similar to that for "fractional" cells 

in one fluid problems, must be given to cells containing more than one 

fluid at each phase of the calculation; and, in addition, a method for mov- 

ing the interface must be prescribed. In the following, a method for per- 

forming Eulerian calculations in cells containing two fluids will be out- 

lined. This procedure has been tested with reasonable success in several 

trial problems. It is characterized by an indirect method for moving the 
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fluid interface. This is as opposed to a direct movement of a boundary 

by means of the explicit motion of points which specify its position. 

A single fluid in an Eulerian mesh cell is characterized by a den- 

sity, velocity, and internal energy "located" at the cell center. When 

two fluids are present in such a cell, each will have a distinct density, 

internal energy, and parameter specifying the fraction of the cell each 

occupies. A distinct velocity may also be given to each material, with 

the restriction that the components normal to the interface be equal, 

in order to allow for slippage at the interface. This situation will 

not be considered here, and a single velocity for both fluids in a given 

cell will be assumed. In addition the assumption of continuity of pres- 

sure will be made so that there is a single pressure in the cell possessed 

"by both fluids. The velocity and pressure of a multi-fluid cell is thus 

treated as in a single fluid cell and is assumed "located" at the cell 

center. Although this point will in general no longer be the cell center 

of mass, errors due to this deviation should not be important. Finally, 

the interface segment within a single cell will always be assumed to be 

a straight line. A specification of which pair of cell boundaries this 

line intersects and the position of the intersection points are required 

to complete the information about the two fluid cell. 

The complexity of the equations of motion for a two fluid cell depend 

on the degree of precision one wants to incorporate in them. Ideally each 

material in a two fluid cell should be treated independently as a single 

fluid in a "fractional cell" except for such constraints as continuity of 
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pressure. This will in fact be done in Phases II and III of the calcu- 

lation, hut the cell will he treated here as a single full cell in 

Phase I. 

Consider an arbitrary two fluid cell such as that shown below: 

Ai+I/2J<I) 

. AI+I/2J(2) 

As with a single fluid cell, it is assumed that at time nAt the den- 

sity, mass, and specific energy of both fluids are known and that a 

single pressure and velocity has also been assigned to each cell. The 

Phase I equations, in which no mass flow occurs, can be deduced from 

Eqs. (2) and (3) to be 
Ja) Jn) 

At 5<n) =    (n)  . Pi-fJr,j      PHr,J   
ui,j     Ui,j Ax (n) ,(n)   .  Jn) ^n) 

(n) 

i,J        1,J ^7 

tT   '   + P2 

At 

(15) 

(16) 
pW *\*> + P<a> 4n) 

4^> 4:^) ttl(1) - tl(1)]+ ^ fS(2) fe](2) - i>\ 
. (n)        (n) (n)      u(n) (n)        (n)      _    (n)        (n) 
Pi+i..1 VJ..1 - PU..1 V».3    , Pi,j+» vi,*»    PJ,J4 vi,j- = - At 

(17) 

where f^O) and rnU2) are the fractional volumes of cell (i,j) at 
i,j      i,j 

/_\ 
"time" n occupied by fluids (1) and (2), respectively. If W±  '(1) and 

R;nU2) are the respective masses of the two fluids in cell (i,j) divided 
i>j 
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by the volume AxAy,   then 

H^n'(2) 

*i>" TäJ 
pi,j(2) 

The R  ., and p  ., are not all independent since 
i,0 s    i,j s 

f(n).0) + f^n).(2) = 1 

HO) and Equation (17) does not permit an independent determination of E. . 

E; U2). Unless these are calculated in a manner similar to that for 
i>d 

fractional one fluid cells discussed above, an additional assumption must 

be made at this point. One such is that the energy brought into the cell 

by the flux terms in Eq. (17) is distributed uniformly across the cell. 

Then each fluid is incremented in energy by an amount proportional to its 

fractional volume so that 

n    (n)    (n)  „(n) 

*iBi<a> = 4ni(a) " "TnTT L 
i,0 

Ax 

>)   (n)  _ (n)   (n) 
pi,j+| i,j+| pi,j-| i,J-i 

Ay 

(18) 

a = 1,2 

The assumption leading to the above equation is, of course, arbitrary. 

The calculation of the mass flows in Phase II is similar to that for 

the single fluid fractional cell described above. There are now two sep- 

arate sets of mass flows, however, one for each fluid. In order to avoid 
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extrapolation of densities "beyond fluid interfaces, mass flows in multi- 

fluid problems have used boundary densities which are simply the density 

of the cell from which the fluid flows. Taking into account the area 

available for each fluid flow across a given cell boundary as determined by 

the position of the interface in the cell, we have for instance for side 

(i+!>J) of the two fluid cel1 Pictured ab°ve: 

If 

$n\ + &]     > 0 

and 

then 

~(n) ~(n) 
~(n)      _ ~(n)       ui+1.J "Ui-1,j   > o 
ui-*i,j " Ui,j + ^ 

^Ja)--its   4>>4&j<«>^    a = 1'2 

if 

and 

then 

~(n)      ~(n)       . n 

~(n)      _ ~(n) 
~(n)      = ~(n)      .   Uj+2.j "1,3    < o 

*43>=^L pi:U(a) A£L(a) AYAt'   a ■n2 

and otherwise 

4 ̂ j(o)-0* a=1>2 
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In these equations, A\  {   .(a) is the fractional area of side (i+5>j) 

of cell (i,,j) available for the flow of fluid a. For two fluids 

If a fluid has no contact with a cell boundary, its fractional area at 

that 'boundary will be zero. 

These considerations of the mass flow across side (i+|,j) of the 

cell illustrated above can easily be extended to the other three sides 

and to other two fluid configurations. The procedure can be seen to have 

one serious limitation. If there were flow upward across the top, 

(i,j+|), of cell (i,j), all of mass (l) would have to vacate this cell 

before any of mass (2) could enter cell (i,j+l). Thus the method of cal- 

culation introduces local irregularities into 1he interface surface, though 

on the average the boundary will follow its proper course. This difficulty 

can be remedied by calculating the mass flows on the basis of the volume of 

one cell which is transported to another. The mass flow would then just 

be equal to the masses originally contained in this small volume. 

The final step in the mass flow calculation for a two fluid cell is 

to check that the existing masses do not exceed the total mass originally 

in the cell. If it should for one of the fluids, each outgoing mass flow 

for that material must be reduced proportionally to its originally calcu- 

lated value so that the sum of the outgoing flows exactly equals the total 

mass originally present. For example, if the total mass of material (1) is 

M. .0) and the outgoing mass flows are 
i>J 
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AM. , iO) <0 

AM., ,(1) >0 
i+2>0 

M
1,j

0)<A,W1)-A,W1> 

then the replacement must be made 

AM. , I(1) -♦ rAM. . iO) 

AM., ,(1) -4 rAM. 1 (1) 
1+2*0 1+2*0 

where 

The third phase of the two fluid calculation is essentially the same 

as in the single material case. Equations (8), (10), (11), and (12) are 

still relevant except that it is the "mass" (per volume Ax Ay) 

n(n) _ .p(n) (n) (19\ 

which must replace the densities p. . which explicitly appear in these 

equations. It should he noted that for cells containing only a single ma- 

terial R«t  = p<t , while for multi-material cells the new densities 
1>J     ij«J 

Pit (°0 axe  still unknown at this point of the calculation. The third 
i>J 

phase of the calculation must further contain a test, after the calculation 

of the new R   quantities, to see whether a given cell has remained a one 
1,0 

of two fluid cell, or whether a single material cell has become a two 
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material cell, or vice versa. If no change in cell structure has oc- 

curred, no further work is necessary. But if a one material cell has 

become a two material cell, provision must be made to determine the 

"type" of cell in accordance with Fig. 3, locate the interface, and cal- 

culate the densities; while if the reverse is true, these special con- 

siderations are no longer necessary. 

As was stated above, at the end of the Phase III calculation the 

densities in multifluid cells are still unknown and must be obtained. 

In addition the new position of the boundary between materials must be 

found and a method given for computing the pressure in these cells. 

These quantities could be calculated directly on the basis of a procedure 

which involves the explicit movement of fluid interface with interpolated 

velocities during the Phase II calculations. However the necessity of 

keeping the interface motion compatible with the mass flows causes this 

to be a complicated, though not intrinsically difficult process. As an 

alternative, one can first obtain the pressure and densities in the cell 

as a consequence of the assumption of continuity of pressure and then use 

this information to locate the intercepts of the interfluid boundary with 

the cell sides. By way of example, if the two fluids were perfect gases 

obeying the equations of state, 

and 

p(l) « by  - 1) PO) 1(1) 

P(2) = (72 " 1) P(2) 1(2) 

where I is the specific internal energy, the continuity of pressure in the 
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two material cell (i,j) requires 

Here all quantities but the p. .(a) are known at the end of the Phase III 

calculation. Using the relations 

R. .(a) 

and 

f. .(1) + f. -(2) = 1 

one can obtain an equation for f. .0) 

B, .(1) B (2) 

whose solution is 

(r, - 1) B. (i) ^ jd)  

Once f  (1) is known, p. .(1)> P. -(2), and p.  can be found immediately. 
i,j ijJ     !^J        ^J 

In practice, if the equations of state for the materials are compli- 

cated and the cell size small compared to the distance over which signifi- 

cant changes in parameters occur, it may be adequate and easier to extra- 

polate the densities in multifluid cells from those in single fluid cells. 

The cell pressure can then be obtained from those of the two materials as 

an average weighted by the fractional volumes, f. .(a), of each. 
i, J 

With the fractional volumes, f. (a), of the two fluids in the 
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interface cells known, a simple procedure for obtaining the interface 

position can be prescribed provided the slope of this boundary does not 

vary rapidly from cell to cell. If this latter condition is not met, 

the mesh is probably too coarse to provide an accurate calculation in 

any event. This procedure, which will be described below by an example, 

can be used in Cartesian coordinates or in cylindrical coordinates away 

from the symmetry axis. Consider the situation illustrated below: 

We want to calculate the intercept distances yAy on the right of cell 

(i,j). It is assumed that the cell types, i.e., the sides cut by the 

interface in each cell, have already been determined by testing the com- 

position of neighboring cells. A "distance" y can be obtained in three 

different ways by the assumptions: 

(1) the interface in cell (i-1,j-l) and (i-1,j) is a single straight line 

(2) the interface in cell (i-l,j)  and (i,j)  is a single straight line 

(3) the interface in cell (i,j)    and (i+1,j) is a single straight line 

Under the first assumption one obtains the equations, 

1 
fi-1,j-1(2)=2ab 

fi-1,J(l) ^ ^ 
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a   yT 
b  1 

Therefore 

'i -2 [wiJ 'VW1' h-1,1-^ 
Similarly under assumptions (2) and (3) one gets 

^ - 4/W1)cW1, + fi,Jll)J" f±-,'J<1)- 

Vä ?\P 
A simple average of these three quantities will generally give an ade- 

quate approximate value for the intercept distance y. Under some cir- 

cumstances the fractional volumes f. . may not be compatible with reason- 

able straight line interfaces through a pair of cells. If this is the 

case, the final value for the boundary position may be negative or grea- 

ter than 1. If this should happen, a cruder approximation for y above 

can be used which is not subject to this type of error. This approxima- 

tion is to make the boundary position equal to half the sum of the frac- 

tional volumes of the two adjacent cells whose common side is cut by the 

interface. For instance in the above example, set 

y = Ö f. , .(1) + f. -0) 
L 1-1,3 i,J  . 

After the computation of the intersections of the cell boundaries 

with the fluid interface, which gives the areas (in Cartesian coordi- 

nates) available for flow in bi-fluid cells, the cycle of calculation is 

completed. 
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Appendix I contains a table of equations for interface positions for 

different material configurations under the assumption that the boundary 

though two adjacent cells is a single straight line. 

IV. CALCULATIONS OF SUPERSONIC FLOW PAST BLUNT CYLINDRICAL OBSTACLES 

As an illustration of the numerical procedures described above and a 

check on their accuracy, a code for the IBM 7090 digital computer was 

written to calculate the flow past arbitrarily shaped cylindrical objects. 

This is a problem which is not generally amenable to direct analytic calcu- 

lations and is of some intrinsic interest. 

Because of the assumed axial symmetry of the obstacles, cylindrical 

coordinates have been used for this calculation requiring several modifi- 

cations of the one fluid Eulerian difference equations discussed in Sec- 

tion II. These changes are due to the increase of volume and effective 

boundary area of a cell as its distance from the axis increases. Equa- 

tions referring strictly to motion in the axial direction (z-direction) 

are identical to the Cartesian equations. 

If i and j are the cell indices referring to the z and r directions, 

respectively, and if j = 1 gives the row closest to the symmetry axis, the 

complete set of difference equations for non-fractional cells in cylindri- 

cal coordinates is as follows: 

Phase I 

radial velocity 

n(n>  - n(n) 
tfn) = u(n) „ Pi,j4  Pi,j4  At 

1,3        1,0 Ar        (n) 
l,j 
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longitudinal velocity 

(n)     (n) 

i,0   i,0 A z 
J. . 
1,0 

specific energy 

E$n).  - E(.n). 
i,0        1,0 

i,0+2    1*0+2  1,0-2    1/J"2 
CO - t) Ar 

(n)        (n) (n)        (n) 
P    l  . T    l   . ■ p    i  . v;  I , 

+ A z 
At 

Pi,0 

where 

(n) 1 (n)        (n) 
i+2,0      2 L^i,0        i+1,JJ 

,  etc. 

Phase II 

A M<1 
1"2,0 

1+2,0 

A i4»u. 
1,0~2 

(J 

(0 

(Ö 

1)  pW   . tfai   . A r2 At 

h  PH   • vH   . A r2 At 
2'  pi+t,o    x+#,o 

1)  p,(n).   i rfn).   i ArAzAt 

4nl= j plnUnlArAzAt 
1,0 + 2       1,0 + 2  1,0+2 

where the p.i ., v:!. ., etc. are calculated as in Section II. 
1-2,0   1"2,0 
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Phase III 

(n+1) _ p.   _. + 
1,0 1,0      (j.i)ArAz .      1    2*0 1+2*0 

+ ^
n).   x  - AM(.n).   x 

1*0-2 1*0+2. 

X^  =  (c.   .(1)  x[nl   . *HH   , + C    .(2)  X^.  .  AM$n). 
1,0 y i,jv 1-2*0        i-2*J        i*0 i,J-l i,0- 

+ C.   .(5) X.   .   , AM^l   . 
1*0 i+1*J i-g-,0 

;(n) 
+ °ljk)^^   + ^ {(M) Ar2A,pW  -  P-C^O)] äMW, 

[1-C       (2)]AM^n)   x -  [1-C       (3)]  AMg 
1>0 1*0"2 1*0 1+2*0 

['-ci,j(t)]AMi:u 
, .   x,A   2A       (n+1) 
(j-2)Ar  Azp 

where X is u, v, or E; and C. ,(k) is one or zero depending on 
1*0 

whether fluid is flowing into or out of cell (i,j) across side 

k as defined in Section II. 

The differences between the Cartesian and cylindrical equations are 

seen to be minor. Explicit artificial viscosities can be calculated as 

explained earlier and the rules for treating fractional cells apply un- 

changed except for the form of the fractional volumes and areas. Appen- 

dix II contains a table of fractional areas and volumes for the different 

types of fractional cells in cylindrical coordinates. One additional dif- 

ference that should be noted is the boundary condition at the axis of 
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symmetry. This must "be treated as a rigid barrier. 

The problems -which were run with the obstacle code were chosen to 

2 
coincide with a set of supersonic wind tunnel experiments by Marschner 

3 
and a similar experiment at a higher Mach number by Oguchi.  The 

Marschner experiments which were simulated were the flow of air past a 

right circular cylinder at Mach 1.58 and the flow of air past a cone of 

75° vertex angle attached to a circular cylinder, at Mach numbers 1.41, 

1.58, and 1.71. The Mach 1.41 case was also rerun at double the mesh 

resolution in order to obtain an idea of gain in accuracy which could be 

brought about by decreasing the cell size. The experiment of Oguchi 

which was considered was again the flow of air past a right circular cyl- 

inder but at Mach 4.3. In all of these experiments, a detached shock 

wave was present. The data on the flows which were available and with 

which the machine computations were compared were the positions of the 

shock fronts and the pressure distributions at the obstacle. Oguchi's 

results also provide the position of the sonic line — line of Mach 1 — 

and the stream line pattern immediately beyond the shock. 

The hydrodynamic differencing scheme which was described in the 

previous sections is explicitly a method for time dependent problems. 

For stationary problems it is necessary to begin the calculation with an 

arbitrary configuration of the fluid, always keeping the correct boundary 

conditions, and advance the time until a steady state is reached. Thus 

the computation contains the dynamics of the approach to steady state as 

well as the steady-state flow itself. In the present calculations a rec- 

tangular mesh was set up as shown with the axis of symmetry as the 

-56- 



"bottom boundary. The upper "boundary was assumed rigid. 

AXIS 

Fluid entered at the left with the free stream conditions 

o = 1,    u = 0,    c„ = sound speed = 1 , p0   '     0   '     0        v ' 

v = ML = Mach number 
0   0 

and excited at the right. The equation of state was that for a polytropic 

gas with 7 = 1,k. 

p = (7 - 1) p[E - £ (u + v )] 

The initial fluid parameters throughout the mesh were chosen equal to the 

free stream parameters. These initial conditions correspond to the impul- 

sive start up of the obstacle in a stationary medium as seen from a re- 

ference frame in which the obstacle is at rest. In the case of the cone 

tipped cylinders, velocities throughout the mesh were sufficiently high 

that the use of an explicit viscous pressure was not considered essential. 

Such a term was used, however, with the blunt nosed(180 cone) cylinders. 

The following table lists the mesh characteristics and viscous pressure 

parameters used in the present calculations: 
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Mesh Size     Obstacle Viscous Pressure 
Cone Angle   Mach Number (r x z) Radius Parameters 

75° 1.41 40 X 60 cells 9 cells none 

75° 1.58 40 x 6o cells 9 cells none 

75° 1.71 40 x 6o cells 9 cells none 

75° 1.41 6o X 60 cells 18 cells none 

180° 1.58 44 X 44 cells 14 cells A = 1.5 
B = 0.5 

180° 4.3 44 X 44 cells 14 cells A =.1.5 
r>  ^ n ^ 

The time steps At vere chosen so that M X At ~ 1 /10 Ar.  In all cases 

Ar and Az were equal. Problems were allowed to run until it was judged 

that changes in the mesh parameters between a time t and t + 40 X At 

were negligible. These running times were on the order of two to three 

hours. 

In order to compare the results of the machine calculations with the 

experimental data for each problem, plots were made of the computed 

position of the detached shocks and of the ratio of the pressure at the 

surface of the obstacle to the true stagnation pressure. In addition, 

stream lines for each flow were obtained by following the trajectories 

of "test particles" through the mesh using the computed steady-state 

velocities. Linear interpolation between the velocities at the cell 

centers was used to obtain the test particle velocity. The stream-line 

plots which follow were made directly from computer results by an auto- 

matic plotter and not hand drawn. In the Mach 4.5 case, an additional 

graph compares the computed and experimental stream lines. 
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In the case of the "blunt cylinders, surface pressures were obtained 

by a linear extrapolation from the pressures at the centers of the cells 

immediately in front of the obstacle. A similar procedure was followed for 

the 75° cones. However there, in an attempt to minimize the effects of 

fluctuations of pressure in the small fractional cells and to provide a sys- 

tematic method for extrapolation to the obstacle, two rows of cells were 

constructed parallel to the surface of the cone as shown below. Pressures 

at the centers of the tilted cells were obtained from the pressures within 

the normal mesh as an average weighted by the area of each normal cell 

within a slant cell. With these averaged values, the pressures along the 

cone were obtained by extrapolation. In the graphs, distance along the 

cone is measured in units of the slant length s as shown. This length is 

just the radius of the cylinder for the blunt faced obstacles. The solid 

lines give the experimental curves while the calculated values are shown 

by circled points connected by broken lines. As mentioned before, pres- 

sures were plotted in units of the true stagnation pressure in each case. 

These stagnation pressures can be obtained by following an element of 

fluid along the axial stream line. From the extreme left until the shock 

front, this element flows with the free stream parameters. At the shock 
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the parameters change discontinuously according to the normal Hugoniot 

relations to 

(7+1)pjd P0v 

From just beyond the shock to the stagnation point, v = 0, Bernoulli•s 

law and the adiabatic equation of state may be used to give the stagna- 

tion pressure and density. Thus 

T~n ps " 2 7-i   P' 

and 

or 

ps    L\2    r pvpyr. 7  - 1 

The stagnation pressures for the situations considered are as follows: 

Mach Number Stagnation Pressure 

1M 2.20 

1.58 2.66 

1.71 3.05 

4.3 17.34 

Shock fronts were obtained from the calculations by first making 

plots of density versus axial position for each row of cells in the case 

o 
of the blunt cylinders and Mach number versus axial position for the 75 

cones. These show a steep rise in the vicinity of the shock followed by 
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a more gradual rise or decline. The plots are given in Appendix III. Be- 

cause of the smearing of the shock front "by the implicit viscous pressure 

inherent in the calculation, the position of the shock is necessarily sub- 

jective to some degree. The shock front lies roughly halfway between the 

point of the initial steep rise and the point where the rise is judged to 

terminate in the density or Mach number curve. A set of unconnected points 

marking the predicted shock position have been plotted in each case as well 

as a solid line marking the experimental shock front. In addition, a pair 

of dashed lines obtained from the approximate one quarter and three quar- 

ter positions on the calculated shock rise curves have been shown. These 

define an approximate limiting region in which the predicted shock must 

lie. In the Mach 4.3 problem, the experimental and theoretical sonic lines 

are also given. Figures k  through 22 show the stream lines, shock front, 

and surface pressure distribution for each of the six problems considered. 

An examination of the graphs shows that, in general, reasonably good 

agreement between theory and experiment can be obtained by the numerical 

methods employed. The estimated positions of the shock fronts agree with 

experiment to better than one cell width in all cases except that of the 

blunt cylinder at Mach 1.58. There the predicted shock lies farther from 

the obstacle than that determined experimentally, though both curves are 

similar. The displacement of the calculated shock intercept with the 

axis of symmetry with respect to the experimental value amounts to about 

(Text continues Page 81) 

-61- 



Figure k.    Stream lines, 75° cone. Mach 1 M , kO X 6o mesh 
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Figure 5.    Obstacle pressures,  75    cone.    Mach 1.41, 40 X 6o mesh 
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Figure 7. Stream lines, 75 cone. Mach 1.58 
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Figure 8. Obstacle pressures, 75 cone. Mach 1.58 
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Figure 10. Stream lines, 75 cone. Mach 1.71 
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Figure 11. obstacle pressures, 75 cone. Mach 1.71 
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Figure 13. Stream lines, 75 cone. Mach 1.41, 60 X 60 mesh 
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Figure 14. Obstacle pressures, 75 cone. Mach 1.41, 6o X 60 mesh 
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Figure l6. Stream lines,!80° cone. Mach 1.58 
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Figure 19. Stream lines, 180 cone. Mach k.3 
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Figure 22. Detached shock position, 180 cone. Mach 4.3 

-80- 



a five percent deviation. The source of this discrepancy is not known, 

especially since no estimates of experimental errors were given by 
2 

Marschner. 

The comparison of the calculated and experimental pressure distribu- 

tions at the obstacle is somewhat marred by the relatively large fluctua- 

tions for the 75° cones of nine cell radius. Increasing the resolution 

of the mesh as was done in the case of the Mach 1.41 cone reduced these 

fluctuations substantially and resulted in good agreement with experi- 

ment. In general, the calculated pressures follow the trend of the ex- 

perimental pressures at roughly the correct magnitudes. The use of an 

explicit viscous pressure term in the cone problems would have probably 

reduced the pressure fluctuations near the obstacle and generally im- 

proved the agreement with experiment. For the blunt cylinders, no ex- 

perimental pressures at Mach 1.58 were available. In the Mach 4.3 prob- 

lem agreement between calculation and experiment is good except near the 

shoulder of the cylinder where the calculated pressures are somewhat 

high. 

In conclusion, the present numerical method for solving the hydro- 

dynamic equations for supersonic compressible flows will give adequate 

results where extreme precision is not required. The accuracy of the 

scheme depends on the nature of the problem and on specific quantity 

under consideration as well as on the relative size of the mesh compared 

to the expected spatial variations of physical quantities, on the time 

step, and on the proper use of an explicit viscous pressure term. In 
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the present problems, this accuracy may he estimated at about five per- 

cent. There is still much room for improvement in the method. Higher 

order accuracy could probably be incorporated in the equations without 

undue difficulty. However, perhaps the most important undertaking would 

he to improve the treatment of boundary condition, particularly in the 

case of fractional and multifluid cells. 
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APPENDIX I 

The following equations give the intercept with the cell boundaries 

of the interface between a pair of fluids in an Eulerian mesh under the 

following assumptions: 

a. Cartesian coordinates are appropriate. 

b. The cell dimensions are Ax = Ay = 1. 

c. The fluid interface is a single straight line segment within a 

pair of adjacent mesh cells. 

d. The fractional areas f. . occupied by each fluid within a two 

fluid cell are known. The subscripts (i,j) will be abbreviated 

by the single capital letters A or B. 

L (2) (2) 

a (yy 
% 

A 
c 

* \ 
i 

a 
*//// 4/ 

B 

* 
c 

T 
T (2) (2) 

fA0) = a 
(a + b) 

fB(l) =l(b +c) 

b = (a + c) 
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2fA(l)-»=|fA(D-IfB(l) 

»>- 2  tV1'  + fB0)1 

0 = 2 fB(l)  - b = | fB(1) 
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(2)        ttH 

B    V 
t 
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(pV         (2) 

7       B 

fA0) j(a + b) 

V') b c 

£ 
b a - b 
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a-2fA0)  -b = 2{fA(1) +fB(l)  -VfB(1)   [V1)  +fA(1)] } 

b = 2 {VfB(,)   IV1)+V,>J" V> 

c = 
2fB(D f (1) 

VfBU) LfB(i) + fACD]   -fBd) 

5. hc-i 

?^ AXV 

/     B 

///& (2) 

hH 
X^A(2) (2) 

A///) \     B 

VAA <U\ 
^c^ 
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JL 
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2[1   - f.(1)] 
a = 1  - T^V--1 -2{1 -fA(1)+VTr-fA(1)lfB(l); 

b = 
1  +>/[1  -fA(DJ/fB(D 

c = 

2 V') 
= 2{fB(,)+vi*-V1)l V')} 

APPENDIX II 

The following equations give the fractional areas, A. , and frac- 

tional volumes, f, available to a fluid in a mesh cell partially occupied 

by a rigid obstacle in cylindrical coordinates. It is assumed that 

Ar= Az = 1 and that the left- and right-hand cell sides will be desig- 

nated by subscripts 1 and 3> and the bottom and top sides by 2 and kf 

respectively. 

1. A1  ' 

r/j-1  + IV 
J    "   2 

A„ =  1 

A^ = 
r2(J-1  +ir2) 

\ = ° 
t 

(J-1) (r-,+r2) + ^rg + 1/3 (r2-r^Y 

i*J 2j  -  1 
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2. K)(i~,> 
A!  = 

2 
T=1 

A2=0 

V 
\=1 

0-^)Ur2) 

Li,J 

J-4 

(j-1)(2-rg-r1) + 1 - r^ - 1/3 (r^)' 

2j^n 

A1 
= 1 

A2 
= Z1 

A3 
= 0 

\ 
= Z2 

j z2 + (j-1) Zl - 1/3 (V2^ 

i*J 2d - 1 

A1  = 0 

I—* A2 = 1   -  *, 

V1 

\ =  ]   "  Z2 

f,    . =  1   - 
jy (j-1) z., - 1/3 (z2 - z,) 

2j  -  1 
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5. A1 = 

^(j - 1  + £ J^) 

T=T 
A2=1 

V1 

4 2 

ZgCl-^)  [j - 1/3 (1-r,)] 

 2J-T-T  

6. 
A1  = 

0-r,)  U - iO-r,)] 
 r="i  

A2 -   1   -   E, 

A5=1 

\ = 1 

f, . = 1 - 
Vl   (d - 1  + 1/3 r,) 

2J - 1 

7. Al 
= 1 

A2=Z1 

A, = 
(1-r2)   [J * (1-r2)] 

J - 

\-' 

f.   . = 1 
it 3 

(1-z,) r2(j -1+1/3 r2) 

2j - 1 
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8, A,  = 1 

A„ =  1 

A, = 
r2(j  -  1   + i r2) 

0 2 

\=Z2 

%i  -  1 
(1-z2)  (l-r2).[j - 1/3 (l-r2)] 

__ 

9. Ar = 
(1-r,)   [J -iO-r,)] 

T^T 

22t— 

r 1^ 
%?% 

A^O 

A, = 0 
5 

\" Z2 

f.   . 
^"V   [j - 1/3 (l-r,)] 

2j - 1 

10. 
A1   = 

r^j  -  1   + \ r,) 

«3-2 

A2= Zl 

A5=0 

\ = ° 
i*J 

s1x-1(j - 1  + 1/5 ^) 

2j - 1 
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11. A.  = 0 

A„ =  1 

A^ = 
r2<J-1+±r2) 

A    _    1 
J   ~   2 

\'° 
"i,j 

(1-z.,)  r2(j -1+1/3 r2) 

12. A1   = ° 

A2 = 0 

(l-r2)   [j 

V 
A.   = 1   -  zo k 2 

4 0-r2)l 
_j  

"i*J 

(1-»2) (1-r2)   [J - 1/5 (1-r2)] 
__ 

APPENDIX III 

The following six graphs show the changes in the Mach number of den- 

sity in the region of the detached shock for the situations considered in 

this report. On each graph a series of plots are given for the appro- 

priate quantity in different mesh rows. The position z equals zero re- 

presents the left-most extremity of the obstacle in the mesh. The esti- 

mated shock position is marked by an x on each plot and the approximate 

hounding region in which the shock front should lie is marked by small 

circles. 
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